

Recall:

Lecture 2

The Fundamental Theorem of Boolean Functions:

Every Boolean function $f: \mathbb{F}^{\pm B^n} \rightarrow \mathbb{R}$ can be uniquely represented as a multilinear polynomial

over \mathbb{R} :

$$f(x) = \sum_{S \subseteq \{1, \dots, n\}} \hat{f}(S) \cdot \chi_S(x)$$

where $\hat{f}(S) \in \mathbb{R}$ is called the S -Fourier coeff.

$\chi_S(x) = \prod_{i \in S} x_i$ is called the S -Fourier character.

$$\langle f, g \rangle \stackrel{\Delta}{=} \mathbb{E}_{\substack{x \in \mathbb{F}^{\pm B^n}}} [f(x) \cdot g(x)] \quad \deg(f) = \max \{ |S| : \hat{f}(S) \neq 0 \}$$

Inversion Formula: $\hat{f}(S) = \langle f, \chi_S \rangle$.

Plancheral: $\langle f, g \rangle = \sum_{S \subseteq [n]} \hat{f}(S) \hat{g}(S)$.

Parseval: $\mathbb{E}_{\substack{x \in \mathbb{F}^{\pm B^n}}} [f(x)]^2 = \langle f, f \rangle = \sum_{S \subseteq [n]} \hat{f}(S)^2$.

New

Note: if f is Boolean, then $\sum_{S \subseteq [n]} \hat{f}(S)^2 = 1$.

This naturally defines a probability dist D_f over subsets of $[n]$, where S is sampled w.p. $\hat{f}(S)^2$.

Def'n: The total influence is $I[f] \stackrel{\Delta}{=} \mathbb{E}_{\substack{S \sim D_f}} [|S|] = \sum_{S \subseteq [n]} \hat{f}(S)^2 \cdot |S|$.

$\forall k \in \{0, \dots, n\}$ the k -Fourier weight is

$$W^k[f] \stackrel{\Delta}{=} \Pr_{S \sim D_f} [|S| = k] = \sum_{S: |S|=k} \hat{f}(S)^2$$

Alternative way to define $I[f]$:

For $i=1, \dots, n$ define the discrete derivative of f in direction i as

$$D_i f(x) \triangleq \frac{f(x|_{x_i=1}) - f(x|_{x_i=-1})}{2} = \sum_{s \ni i} \hat{f}(s) \cdot \prod_{j \in s \setminus \{i\}} x_j$$

Def'n: $I_i[f] \triangleq \mathbb{E}_{x \in \mathbb{B}^n} [D_i f(x)^2] \stackrel{\substack{\text{if } f \text{ is Boolean} \\ \uparrow \\ x}}{=} \Pr_x [f(x) \neq f(x^{\oplus i})]$

Note: $I_i[f] = \sum_{s: s \ni i} \hat{f}(s)^2 = \Pr_{s \in \mathbb{P}_f} [i \in s]$

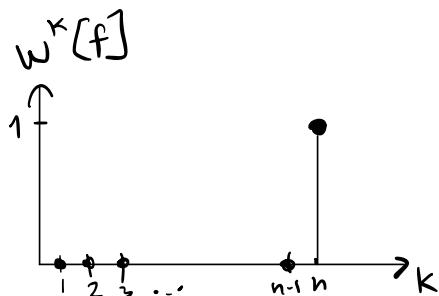
Parity

$$I[f] = \sum_{i=1}^n I_i[f] = \sum_{i=1}^n \sum_{s: s \ni i} \hat{f}(s)^2 = \sum_{s \subseteq [n]} \hat{f}(s)^2 \cdot |s|. \quad I[f] \leq \deg(f)$$

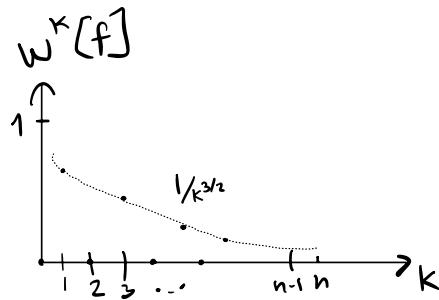
Fourier Concentration and Fourier Tails

Examples:

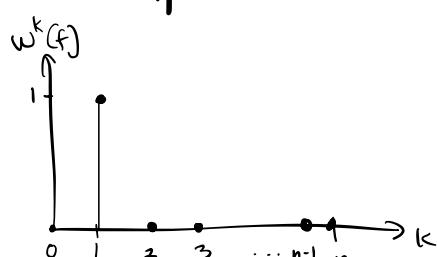
$f = \text{Parity}_n = \chi_{[n]}$



$f = \text{Majority}_n$



$f = \chi_i \text{ (dictator)}$



Def'n: The Fourier tail at level k is defined as $W^{>k}[f]$

$$W^{>k}[f] \triangleq \sum_{S:|S|>k} \hat{f}(S)^2.$$

Claim: If f $W^{>k}[f] \leq \frac{I[f]}{k}$.

Proof: By Markov's Ineq. $W^{>k}[f] = \Pr_{S \in \mathcal{F}}[|S| \geq k] \leq \frac{\mathbb{E}[|S|]}{k} = \frac{I[f]}{k}$

Low Degree Approximations:

Q: Let $f: \{-1, 1\}^n \rightarrow \mathbb{R}$.

Which multilinear polynomial $p(x)$ of degree $\leq k$ best approximates f in ℓ_2 -distance, i.e. minimizes

$$\mathbb{E}_{x \in \mathbb{R}^n} \left[(f(x) - p(x))^2 \right]$$

A: $f^{\leq k}(x) = \sum_{S:|S| \leq k} \hat{f}(S) \prod_{i \in S} x_i$ is the minimizer.

Why? Let p be a generic degree $\leq k$ multilinear polynomial.

$$\begin{aligned} \mathbb{E}_{x \in \mathbb{R}^n} \left[(f(x) - p(x))^2 \right] &= \sum_{S \subseteq [n]} (\hat{f}(S) - \hat{p}(S))^2 \\ &= \sum_{S:|S| \leq k} (\hat{f}(S) - \hat{p}(S))^2 + \sum_{S:|S| > k} \hat{f}(S)^2 \end{aligned}$$

To minimize, pick p with $\hat{p}(S) = \hat{f}(S)$

for all S of size $\leq k$.

Note: The error is exactly $W^{>k}[f]$.

Low Degree Learning Algorithm [Linial-Mansour-Nisan]

Given: random labeled examples of $(x, f(x))$

Want to come up w. a good hypothesis $h(x)$ s.t.
whp h is ϵ -close to f .

Here, we assume the input distribution is uniform over $\{\pm 1\}^n$.

LMN: A learning algorithm that given n, k
and samples $(x, f(x))$ where $W^k[f] \leq \epsilon$
outputs whp a hypothesis that is $O(\epsilon)$ -close to f
in runtime $n^{O(k)}$.

The Low-Degree Learning Algorithm

- For each $S \subseteq [n]$ of size $\leq k$
 - Estimate $\hat{f}(S) \rightarrow \tilde{f}(S)$
 - Output $h = \text{sgn} \left(\sum_{|S| \leq k} \tilde{f}(S) x_S \right)$

How to estimate $\hat{f}(S)$?

Recall: $\hat{f}(S) = \mathbb{E}_{x \in \mathbb{R}^n \setminus \{\pm 1\}^n} [f(x) \cdot x_S(x)] \Rightarrow$ compute empirical mean from labeled examples

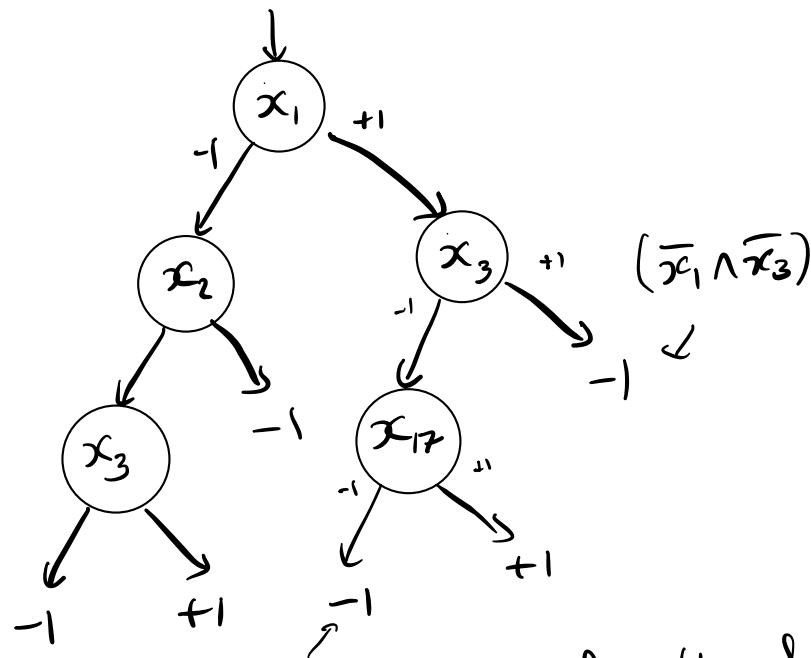
$$\Pr[f(x) \neq h(x)] \leq \mathbb{E} \left[(f(x) - \sum_{|S| \leq k} \tilde{f}(S) x_S(x))^2 \right] \leq W^k[f] + \sum_{S: |S| \leq k} (\hat{f}(S) - \tilde{f}(S))^2$$

[Goldreich-Levin, Kushilevitz-Mansour]:

If f is ε -close in ℓ_2 -norm to a polynomial with m monomials

\Rightarrow can learn f up to error $O(\varepsilon)$ using membership queries to f in $\text{poly}(m/\varepsilon)$ time.

Decision Trees



Fact: If f is a decision tree of depth d then $\deg(f) \leq d$ and the Fourier repr of f has $\leq 4^d$ monomials.

Idea: Write $f(x) = \sum_{l \text{ leaves}} 1_l(x) \cdot f(l)$.

Cor: DTs can be learned in $\text{poly}(n^d)$ using examples $\text{Poly}(2^d)$ using queries.

Restrictions & random restrictions

$$f(x_1, \dots, x_n) \rightarrow f(-1, x_2, +1, x_4, x_5, \dots, -1)$$

A restriction is a partial assignment

$J \subseteq [n]$ — the alive variables

$z \in \{-1\}^{\bar{J}}$ — the assignment to the rest.

The restricted function:

$$f_{J,z}(x) = f(y) \quad y_i = \begin{cases} x_i, & i \in J \\ z_i, & i \notin J \end{cases}$$

Fourier perspective:

$$\begin{aligned} f_{J,z}(x) &= \sum_{T \subseteq [n]} \hat{f}(T) \cdot \prod_{i \in T \cap J} x_i \cdot \prod_{i \in T \setminus J} z_i \\ &= \sum_{S \subseteq J} \prod_{i \in S} x_i \cdot \underbrace{\sum_{T: T \cap J = S} \hat{f}(T) \cdot \prod_{i \in T \setminus J} z_i}_{\hat{f}_{J,z}^S(S)} \end{aligned}$$

$$g_{J,S}(z) \triangleq \hat{f}_{J,z}^S(S) = \sum_{T: T \cap J = S} \hat{f}(T) \cdot \prod_{i \in T \setminus J} z_i$$

Fix J , choose z uniformly at random in $\{-1\}^{\bar{J}}$.

$$\mathbb{E}_{\substack{z \in_R \{-1\}^{\bar{J}}}} [\hat{f}_{J,z}^S(S)] = \hat{f}(S) \cdot 1_{S \subseteq J}$$

$$\mathbb{E}_{\substack{z \in_R \{-1\}^{\bar{J}}}} [\hat{f}_{J,z}^S(S)^2] = \sum_T \hat{f}(T)^2 \cdot 1_{[T \cap J = S]}$$

P random restrictions

- Pick $J \subseteq_p [n]$: for each $i \in [n]$ indep. include $i \in J$ w.p. p
- Sample $z \in_R \mathbb{B}^{\overline{J}}$.

$$\mathbb{E}[\widehat{f}_{J,z}(s)] = \widehat{f}(s) \cdot \Pr_J[s \subseteq J] = \widehat{f}(s) \cdot p^{|s|}$$

$(J,z) \sim R_p$

$$\mathbb{E}[\widehat{f}_{J,z}(s)^2] = \sum_T \widehat{f}(T)^2 \cdot \Pr_J[T \cap J = s]$$

$(J,z) \sim R_p$

Lemma [LMN]

$$\mathbb{E}[W^k[f_{J,z}]] = \sum_l W^l[f] \cdot P_r[\text{Bin}(l, p) = k]$$

$(J,z) \sim R_p$

Proof: $\mathbb{E}[W^k[f_{J,z}]] = \mathbb{E}\left[\sum_{\substack{(J,z) \\ |J|=k}} \widehat{f}_{J,z}(s)^2\right]$

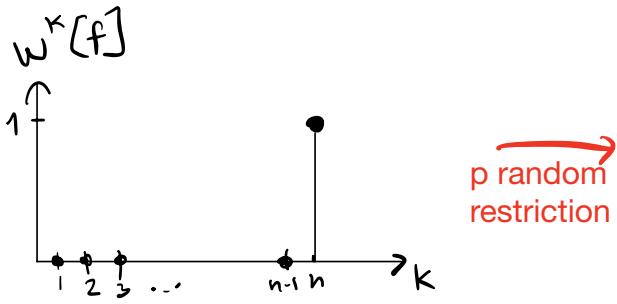
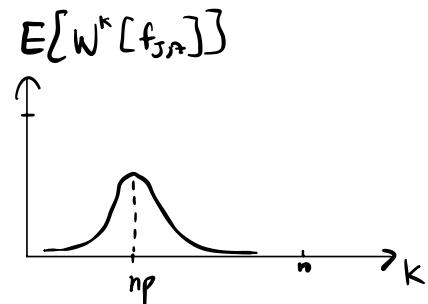
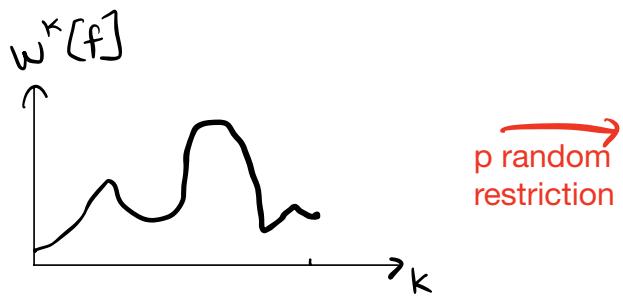
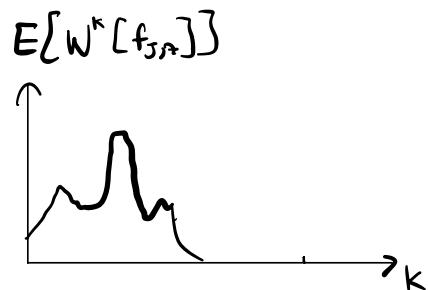
$$= \sum_{\substack{s: |s|=k \\ (J,z) \\ |J|=k}} \mathbb{E}[\widehat{f}_{J,z}(s)^2]$$

$$= \sum_{\substack{s: |s|=k \\ T}} \sum_{J \subseteq_p [n]} \widehat{f}(T)^2 \cdot P_r[T \cap J = s]$$

$$= \sum_{T \subseteq [n]} \widehat{f}(T)^2 \cdot \underbrace{\sum_{\substack{|s|=k \\ J \subseteq_p [n]}} P_r[T \cap J = s]}_{P_r[|T \cap J| = k]}.$$

$$P_r[|T \cap J| = k]$$

Examples $f = \text{Parity}_n$



$D_{f,p}$: the expected Fourier dist. of $f_{J,n}$

- Sample $S \sim D_f$
- Sample $J \subseteq_p [n]$, independently.
- Output $S \cap J$

Beyond Decision Trees

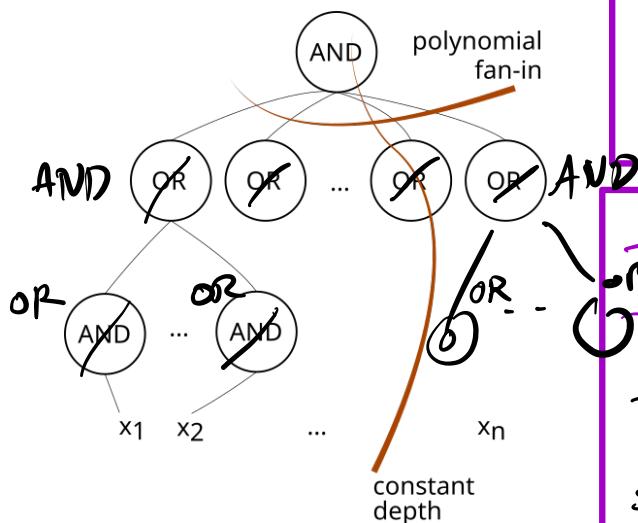
a width- w DNF is a function of the form

$$f = (x_{i_1} \wedge \bar{x}_{i_2} \wedge \dots \wedge x_{i_w}) \vee (1 \dots 1) \vee \dots \vee ($$

a width- w CNF is ... \nwarrow each term has $\leq w$ literals

Fact: Any DT of depth d can be written as a width- d DNF/CNF

AC⁰ Circuits (constant depth circuits)



Thm [FSS, Ajtai, Yao, Hastad]

Parity \notin AC⁰.

Thm [LMN, T]: If $f \in \text{AC}^0(m, d)$

then $\forall \varepsilon \geq 0 \exists k = O(\log m)^{d-1} \cdot \log(1/\varepsilon)$
 s.t. $\mathbb{W}^{\geq k}[f] \leq \varepsilon$.

Cor: Any $f \in \text{AC}^0(m, d)$ can be learned in $n^{O(\log m)^{d-1}}$ time.

Proof Idea: Simplification under random restrictions.

The Switching Lemma [Hastad]:

If f is a width- ω DNF, then
 $\forall p, k: \Pr_{(j, z) \sim R_p} [f_{j, z} \text{ is a width-}k \text{ CNF}] \geq 1 - (5p\omega)^k$

Pick $\omega = k = \log(m/\varepsilon)$ $p = \frac{1}{10\omega}$
 w.p. $\geq 1 - \varepsilon$ all width- ω DNFs \Rightarrow width- ω CNFs
 which reduces the depth by 1.

Apply $d-1$ iterations \Rightarrow A simple function w.p. $\geq 1 - \varepsilon$.

Hastad \Rightarrow LMN:

$f \in AC^0(m, d)$

The composition of $d-1$ random restrictions $\equiv R_q$ with $q = p^{d-1}$

w.p. $1-\varepsilon$, $f_{j,z}$ for $(j,z) \sim R_q$ is a PT of depth k ,

i.e., $W^{>k}[f_{j,z}] = 0$.

$$\Rightarrow \mathbb{E}[W^{>k}[f_{j,z}]] \leq \varepsilon \Rightarrow \underbrace{W^{>k/q}[f]}_{d} \leq 2\varepsilon$$

$O(\log^{(m/\varepsilon)})$

How to Prove the Switching Lemma:

Let $\ell \in \mathbb{N}$ think $\ell \approx n$.

$$BAD = \{(j,z) \in R_\ell \mid DT(f_{j,z}) \geq k\}$$

Re-restrictions
leaving exactly
 ℓ vars alive.

$$E: BAD \xrightarrow{1:1} R_{\ell-k} \times X \quad |X| \leq O(w)^k$$

$$\Pr_{(j,z) \sim R_\ell}[(j,z) \in BAD] = \frac{|BAD|}{|R_\ell|} \leq \frac{|R_{\ell-k}| \cdot |X|}{|R_\ell|} = \frac{\binom{n}{\ell-k} \cdot 2^{n-(\ell-k)} \cdot O(w)^k}{\binom{n}{\ell} \cdot 2^{n-\ell}}$$

$$\approx \left(\frac{\ell}{n}\right)^k O(w)^k$$

Encoding for width- ω DNFs, $k=1$.

WTS: $\Pr[\text{DT}(f_{j,z}) \geq 1] \leq O\left(\frac{l}{n} \cdot \omega\right)$

$$f = (x_{i_1} \wedge \dots \wedge \overline{x_{i_\omega}}) \vee (\dots \wedge \dots) \vee \dots \vee (\dots \wedge x_j)$$

$$T_1 \qquad \qquad \qquad T_2 \qquad \qquad \qquad T_i$$

Let $(j, z) \in \text{BAD}$. Then, $f_{j,z}$ is non-constant.

Then \exists a first i s.t. $(T_i)_{j,z} \neq \text{false}$.

since $(j, z) \in \text{BAD} \Rightarrow (T_i)_{j,z} \neq \text{true}$.

Find a literal $x_j/\overline{x_j}$ not fixed in T_i .

Assign x_j consistently with its literal in $T_i \Rightarrow (j', z')$

Extra Information: position of $x_j/\overline{x_j}$ in T_i .

$\text{Enc}((j, z))$ outputs a pair $((j', z'), \text{index}) \in \mathbb{R}_{l-1} \times [\omega]$.

Injective:

Given $((j', z'), \text{index})$, we decode (j, z) as follows:

- Find first term T_i s.t. $(T_i)_{(j', z')} \neq \text{false}$.
- Let $x_j/\overline{x_j}$ the literal at position index inside T_i .
- Make x_j alive $\rightarrow (j, z)$.